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On the Convergence of Collocation Methods for 
Boundary Integral Equations on Polygons 

By Martin Costabel and Ernst P. Stephan* 

Abstract. The integral equations encountered in boundary element methods are frequently 
solved numerically using collocation with spline trial functions. Convergence proofs and error 
estimates for these approximation methods have been only available in the following cases: 
Fredholm integral equations of the second kind [4], [7], one-dimensional pseudodifferential 
equations and singular integral equations with piecewise smooth coefficients on smooth curves 
[2], [3], [17], [26]-[29], and some special results on the classical Neumann integral equation of 
potential theory for polygonal plane domains [5], [8], [9]. Here we give convergence proofs for 
collocation with piecewise linear trial functions for Neumann's integral equation and Symm's 
integral equation on plane curves with corners. We derive asymptotic error estimates in 
Sobolev norms and analyze the effect of graded meshes. 

0. Introduction. In this paper we give convergence proofs and asymptotic error 
estimates in Sobolev norms for collocation with piecewise linear spline trial func- 
tions applied to two basic integral equations of potential theory on plane polygons, 
namely the integral equation of the second kind with the double layer potential 
("Neumann's integral equation"), and the integral equation of the first kind with the 
simple layer potential ("Symm's integral equation"). We use an idea of Arnold and 
Wendland [2], namely considering Dirac delta functions (the "test functions" in the 
collocation method) as second derivatives of piecewise linear functions. Therefore, 
similar results as presented here should be possible for splines of higher odd order. 
Corresponding results for even-order splines are not yet available. Thus, for one of 
the simplest methods of numerically solving Dirichlet's problem on a plane domain 
with corners, the midpoint collocation with piecewise constant trial functions for the 
first-kind integral equation with the simple layer potential, convergence is still an 
open problem. The method of Fourier series that yields the convergence proof in the 
case of a smooth boundary [27] cannot be applied in the presence of corners. 

We apply the method of local Mellin transformation that has previously been used 
to derive error estimates for Galerkin methods for a wide class of operators, 
including those occurring in boundary element methods in acoustics, electromag- 
netism, and elastostatics [11]-[14]. Thus, it is to be expected that also the techniques 
presented here will apply to a rather large class of integral equations. For example, 
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the case of singular integral equations of Cauchy type will be treated in a forthcom- 
ing paper. 

Let F be a connected closed plane curve composed of smooth arcs FP, j = 1, . . ., J, 
that meet at the corner points z1 at interior angles wj E (0, 2 7). The Sobolev spaces 
HS(F) are defined for s > 0 being the restriction of Hs1/2(R2) to F, for s < 0 by 
duality: Hs(F) = H-s(F)/, and H0(F) = L2(r). It is known [11], [12] that for 
jsi < 3/2, the space Hs(F) may equivalently be defined as the corresponding 
Sobolev space on the arc length parameter interval, transferred to F by the 
parameter representation map. 

We consider the following two integral equations on F: 

(0.1) (1+K)u=f 
(0.2) Vu =f. 

Here the operator K of the double layer potential is defined by 

(0.3) Ku(z):= - 1 U' a log| z- | ds 

where s(') is the arc length on F and a/an(g) denotes the derivative with respect to 
the normal vector at ' Ee F pointing into the interior of F. The operator V of the 
simple layer potential is defined by 

(0.4) Vu(D)= - u u(D)logjz- -ds(I). 

It is known [11] that 1 + K: Hs(J') -> Hs(F) is continuous and bijective for all 
Se(24- oa09, + ao), where we define ao, a,..., aJ E ( 21) by 

aj min{,T 6 27 ; a0:= min{ajj=1 ,J ,J} 

Similarly, V: Hs(F) -+ Hs+l(F) is continuous and bijective for all s E - ao, 
- 2 + ao), provided the analytic capacity of F is not equal to one. We shall assume 
this in the sequel. 

For the collocation method, we need a grid AN = { X1, ..., XN } C F, the xj being 
both the collocation points and the meshpoints of the trial functions. By S1(AN) we 
denote the N-dimensional space of splines of order 1, i.e., each u E Sl(AN) is a 
continuous function on F that is a linear function of the arc length on each of the 
segments xnxn+1 n = 0, ... , N - 1, where xo := XN. Let 

h:= max{txn+l-xnljn = 0,..., N-1}. 

We do not impose a uniformity condition on A N, but assume only that h -> as N 
tends to infinity. 

For the second-kind integral equation (0.1), the collocation method is the follow- 
ing: 

Find UN E S1(AN) such that 

(0.5) (1 + K)UN(Xn) = f(Xn), n = N. 

For the first-kind integral equation (0.2), the collocation equations are 

(0.6) VUN(Xn) = f(xn)I n = 1,.. ., N, 
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but we shall have to modify (0.6) in some way in order to obtain a convergence 
proof (see (3.3) and (3.6)). 

The paper is organized as follows: In Section 1 we present some facts on the 
convergence of general projection methods. They are stated in a form which is 
convenient for the application to collocation methods and allow easy incorporation 
of compact perturbations as well as localization arguments. 

In Section 2 we prove convergence and stability in the H1 Sobolev norms for the 
approximation scheme (0.5) for the second-kind integral equation (0.1). 

In Section 3 convergence and stability results for two modifications of the scheme 
(0.6) for the first-kind integral equation (0.2) are shown. 

In the final Section 4 we investigate the asymptotic orders of convergence. For the 
case of the first-kind integral equation, where we have to use weighted Sobolev 
norms, we prove a new approximation result and we show that the use of suitably 
graded meshes yields convergence of the same order as for smooth curves. 

1. On the Convergence of Projection Methods. We need some results on the 
convergence of projection methods, including compact perturbations and spaces 
with two norms. Such results are well known [16], [19], [24], but we present a 
formulation that is particularly adapted to the present case. As the lemma in 
question might be of independent interest, we also include a complete proof. 

Let X and Y be Banach spaces and A: X -> Y be bijective and continuous. For 
the approximate solution of the equation 

(1.1) Au =f 

we assume that we have a sequence of finite-dimensional subspaces 

VN C X, TN CY', dimVN= dimTN< ox (N E N) 

and we replace Eq. (1.1) by the relation for UN E VN, 

(1.2) (t, AUN) = (t, f) for all t E TN. 

Here the brackets denote the duality between the space Y and its dual Y'. We make 
the following assumptions: 

(i) There exist bounded operators PN: Y' -* TN that converge on Y' strongly to 
the identity operator. 

(ii) There is a Banach space X0, continuously embedded in X (hence, lix lIx < 
C I I xI0 for all x E X0 and some constant C). 

(iii) For all N there holds VN C X0. 
(iv) For all N we are given a mapping QN: VN -' TN and a constant M such that 

(1.3) I(QNV, AW) I _< M11v JixJw Jixo for all v E XN, w E Xo, N E N. 

(v) There exists a collectively compact sequence of operators CN: X -* X' in the 
sense of [1] and a constant y > 0 such that 

(1.4) IKQNV AV) + KCNV, V)I | yJvJ|| X for all v E VN, N E N. 

LEMMA 1.1. Under the above conditions (i)-(v) there exists NO E N such that for all 
N > NO the system (1.2) has a unique solution UN E VN for any f E Y. There is a 
constant C such that for this "approximate solution" UN and the "true solution" u 
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there holds 

(1.5) IIUN IIX < CII U IIX0 for all u E X0, N > NO, 

(1.6) ||u .- UN II X<" C inff II u - 1x, I ii E VN } 

Proof. For abbreviation, we write 11 -I:= 11 lIx and 11 IK:= 11 -lx0. The deriva- 
tion of the quasi optimality (1.6) from the stability (1.5) and the unique solvability of 
the system (1.2) is standard: 

Denote the solution operator u -+ UN by GN. Then GN: X0 -+ (VN, 1) is a 
projection operator. Its norm is bounded by C for all N > NO by (1.5). Thus for all 
i4 E VN: 

I|u - UNII =I|u - GN (u - ii) |< | u - i || + CII u - i II0. 

Hence the assertion (1.6) follows. 
For the proof of unique solvability of (1.2) and stability estimate (1.5) we consider 

first the special case where all operators CN in assumption (v) vanish. (Actually, this 
is not so special: The existence of QN with (1.4) for CN-= 0 is also necessary for 
stability, cf. [17].) Then from (1.4) it follows that the solution of (1.2) is unique, 
namely: 

If (t, Av) = 0 for all t E TN and some v E VN, then 

yI|v1I <I(QNV, Av)I = 0, hence v = O. 

As (1.2) is represented, after choosing bases in VN and TN, by an N X N system of 
equations, the existence of UN follows from uniqueness. The stability estimate (1.5) 
follows from (1.2), (1.3), (1.4): 

12 1 1 M 
1I UNII < I(QNUNAUN)| = YI(QNUN, Au) | -I|| UN || I| U Io 

Now we consider the general case with nonvanishing perturbations CN. We define 
new operators QN and show that all assumptions are satisfied for large N if we 
replace QN by QN and CN by 0. Thus we reduce the general case to the special case 
considered above. Define 

QN = QN + PNA' CN = QN + A 1CN -(1 - PN)A 1CN 

Here A'1 is the inverse of the isomorphism A': Y' -- X' adjoint to A. The norms 
of PNA'1CN: X -- Y' are bounded, hence 

I(ONVAw)I -<I(QNVAw)I + (PNA1 CNV, Aw) 

< M|| v|| 11 w ll + M11II v | |w || 

< (M + CMJ)IlvII tlwlk. 

Thus (1.3) holds for QN and all N. As 1 - PN O 0 strongly on Y' and the operators 
A-1CN: X -p Y' are collectively compact, A'(1 - PN)A'`1CN: X -- X' tends to 
zero in operator norm. If we denote the operator norm of A'(1 - PN)A'-1CN by AN, 
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we obtain 

I(QNvAv)I = (QNV, AV) + (A1c CNv, Av) + ((1 - PN)A' Cvv, Av) 

- (QNV, AV) + (CNv, v) + (A'(1 - PN)A 'CNV, V) 
2~~~~~~~ 

y - SO ) | IIvI| 

Thus, if N is large enough to imply 6N < y, the corresponding estimate (1.4) holds 
for QN0 and CN replaced by zero. This completes the proof. E 

Remark 1.2. We shall need the lemma only for the case of QN and CN not 
depending on N. Thus QN Q: X0 -- Y' will be a linear operator satisfying 

(1.7) QVNC TN forall Ne N, 

and CN C: X -- X' will be a compact operator, or equivalently, the quadratic 
form v - <Cv, v) appearing in (1.4) will be completely continuous on X. 

Remark 1.3. The operators PN: Y' -+ TN are not explicitly needed for (1.2). Only 
their existence is used in the proof. If Y' is a Hilbert space, we can take the 
orthogonal projections onto TN. We then must assume that TN -+ Y' in the sense 
that for all t E Y' there is a sequence tN E TN converging to t. By duality and the 
reflexivity of Y, this can be formulated as the following condition. 

(1.8) If y E Y and limN_ 0(tN, y) = 0 for each sequence tV E TN, 
then y = 0. 

We shall use this condition later on instead of (i) above. 
The GArding type inequality (1.4) can be localized by means of a partition of 

unity. We formulate this result for the situation of spaces with two norms but with 
QN and CN not depending on N. Thus, we make the following assumptions: Q: 
X- Y' is a linear operator with A'Q: X - X0' bounded (according to (1.3)). 
There exist bounded linear commuting operators a. 0 = 1 m) on X and bj 
(j = 1,..., m) on Ysuch that 

(a) X7.la2 = Ion X; 
(fi) B 0:= Aaj - bjA is compact from X to AX0 C Y; i.e., A-1Bj0: X - X0 is 

compact; 
(y) BJ := Qaj - bQ is compact from X to Y'; 
(8) For every k = 1,...,m there is a compact operator Ck: X -+ X' and a 

constant Yk > 0 such that 

(1.9) Re((Qakv, Aakv) + (Ckv, v)) > ykI ak 2Ix for all v E X. 

LEMMA 1.4. Let the assumptions (a)-(8) be satisfied. Then there exists a compact 
operator C: X -. X' and a constant y > 0 such that 

(1.10) Re((Qv,Av) +YIvIX for allve X. 

In particular, (1.4) holds. 

Proof. From (fi) and (y) it follows that for j, k = 1,..., m, 

(Qar,- Aa*v) = (Qaka v, Aaka v) + (CkJv- v) 
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with Ckj: X -+ X' compact. Here one has to use that B'Q: X - X' is compact. 
There follows 

m 

(Qv, Av) = (Qa2v, Aa2v) 
jk=l 

m 

= E ((Qaa v, Aaka v) + (Ckiv, v)). k 
, k = j~k=l 

By (1.9), 

Re((Qakaiv, Aakaiv) + (KCkav, ajv)) > YkI akajv 112, 

hence 

Re(Qv, Av) > E (Ykllakajv I - Re(Ckjv, v) - Re(CkajvaJv)) 
j,k=l 

> Y1v1 112 - Re(Cv, v) 
with y:= lmin(ykjk = 1,...,m) and C Ej, k2(Ckj + a'Ckaj). E 

Remark 1.5. Note that in this formulation the finite-dimensional spaces VN and TN 
do not appear. Therefore, this local principle is very easy to apply. Compare also the 
local principles of Prossdorf [22] and Silbermann [17]. 

2. The Second-Kind Integral Equation. In order to show convergence of the 
collocation scheme (0.5) for the integral equation (0.1), we apply Lemma 1.1 to the 
following situation: X0 = X = Y = H'(I); A = 1 + K; VN:= S'(AN); 
TN:= S1(AN), where 

(2.1) S-'(AN):= span{ 8(x-xl) I n = 1, . . ., N}. 
We have to check the assumptions of Lemma 1.1. 

The abstract Galerkin equations (1.2) coincide with the collocation equations 
(0.5). Furthermore, assumption (i) of Lemma 1.1 is satisfied in view of Remark 1.3. 
Namely, Hi(r) is continuously embedded into C(r) and the condition h -+ 0 
implies that every point t E I' is an accumulation point of a sequence N E AN. 
Thus the hypothesis in condition (1.8) is only satisfied if y 0 on r. 

Next we define 

(2.2) Q := D 

i.e., the second distributional derivative with respect to the arc length. Then clearly 

(2.3) QS'(AN) C S1(AN) 

holds, i.e., (1.7) is satisfied. Note that our lemma does not require QN to be bijective! 
(The latter property is frequently assumed in other approaches [2].) 

We have to show the two estimates (1.3), (1.4) in the case QN = Q. The first one 
follows by continuity: Let v, w E Hl(f); then 

(2.4) |(Qv, (1 + K)w) I = I-( Dv, D(1 + K)w)L2(r)I 

V< I| vH6(r)II(l + K )w IIH1(r) < MV1 IIH1(r)II w 61(r). 

Note (2.4) is true for any Lipschitz curve r. 
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The GArding type estimate (1.4) requires more work, and it is only here that we 
use the special shape of F as a (curved) polygon. 

LEMMA 2.1. There is a constant y > 0 and a compact operator C: H1(F) - H-1(F) 
such that 

(2.5) |(Dv, D(1 + K)v) + (Cvv) ~ | YIIvIIH1(r) for allvE HE(F). 

For the proof of (2.5) we use a partition of unity and Lemma 1.4 to reduce (2.5) to 
the corresponding estimate on a reference angle. 

Let 17d = eiR +U R+ be this reference angle. If we use Fr, to parametrize a 
neighborhood of one of the corners zj, then the operator induced by K differs from 
the operator of the double layer potential defined on r,, only by an operator that is 
compact on H1; see [10]. Thus we only need to consider the case that F and rd 

coincide on a neighborhood of the origin, and K is defined on i,. We then have to 
show 

LEMMA 2.2. There is y > 0 such that 

(2.6) Re(Dv, D(1 + K) v) > 2 

for all v E H( Fr,) with support in a fixed compact set. The constant y may depend on 
this compact set and the angle W, but not on v. 

Proof. We proceed analogously to the proof of Ghrding's inequality for 1 + K in 
[11]. The operator K maps even and odd functions on r,, to even and odd functions, 
respectively. Therefore, it suffices to show 

(2.7) Re(Dv, D(1 ? K)V)L2(R) > YIIVIIH1R 

for all v E CO [0, so) with 

Kay (x):= -J Im( e )c1>(y) dy. 

By the Parseval relation for the Mellin transform we obtain 

Re( Dv, D(1 ? K )v) 

(2.8) = 1 Ref IX + i2 
21 IMA= -1/2 

sinh( 7r - )(X + i) I{ (A + 12 
(i + sinh7r(X + i) i)~X+i~X 

Here the Mellin transform is defined by 

v (X):= f ' '~v (x) dx, 

and we use 

Dv(X) = -i(X + i)V(X + i), 

sinh(-7r- -W) X 
Kljv,\)sin 7 b( X) for Im X CE -1,1) [11]. 



468 MARTIN COSTABEL AND ERNST P. STEPHAN 

Now we have 

sinh ( ) < sin 2 =:1 - q < 1 for all Xwith ImX = 2 

(In [11] we used this estimate for Im X =-.) Therefore, we can estimate (2.8) 
from below by 

1- q I IX + i12 _(X + i) 12d = (1 - q) 11DvjjL2(R )> YIIVIIH1(R)2 E 
21 ImX= -1/2 

Proof of Lemma 2.1. Choose a partition of unity X1 E CO(R2) with Em x 1X 1 
on F such that XJ > 0 and kj:= gX E Co' and such that the support of Xi 
contains exactly one corner zi. (Thus m = J.) Then aj = bJ = b)' in Lemma 1.4 is the 
operator of multiplication by XJ. Then the commutator of A with aj is compact on 
Hi(J) (actually it maps L2(r) into H1(F) continuously), and the commutator of Q 
with a1 maps Hi(r) into L2(r) and hence is compact from Hi(J) to H-i(r). 
Together with Lemma 2.2, we see that all assumptions of Lemma 1.4 are satisfied, 
and its conclusion (1.10) gives (2.5). L 

We can now apply Lemma 1.1 and find immediately 

THEOREM 2.3. There is an No E N such that for all N > No and all f E Hi(J) the 
system of collocation equations (0.5) has a unique solution UN E S1(A N). There is a 
constant C independent of N and u such that 

j|UN IIH'(F) < Cjj u IIH'(F) 

and 

jjU - UNIIH1(r) < Cinf{I u - UIIH1(F)IU E S1(AN)} 

Remark 2.4. Note that the grids A N need not be uniform. Nor do they have to 
include the corner points. One can conjecture that the estimates in Theorem 2.3 hold 
for arbitrary bounded Lipschitz domains, probably also in higher dimensions. Up to 
now, however, there exists no proof avoiding the use of Mellin transformation. 

3. The First-Kind Integral Equation. We consider the collocation scheme (0.6) for 
the integral equation (0.2). The natural choice Q = D2; X= H+1/2(F), A = V is 
not useful, because in general then (Qv, Av) = ox, i.e., Q does not map into 
Y' = (AX)' c H-3/2(r). We present two variations of this natural choice. Let us 
first define 

f1/2(F):= {uEHl/2(F) 1 iy 1 H1/2(F)(j= i,**, J), 
(3.1) 

H (F: = ) 

where i = u on FJ', i =0 on \F J}. 

The norm in H1/'2(F) is 

J 

11 U 11 U1 I1l/2(r). 
j=l1 

Then H1/2(F) is the completion of C (F \ {zl,..., zj}) in this norm. H'1/2(r) is 
densely embedded in H1"2(F). The operator V maps H1"2(F) continuously into 
H3/2(F) but it is not surjective, as the H-1/2(F)-solution u of Eq. (0.2) with smooth 
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f in general behaves like O(Iz - zj11 -1) near zj, where aj was defined in the 
introduction [11]. Thus, in general, u 4 HS(r) for s > ao - 2 E (0, 2). We define 

(3.2) S(AN):= { V E Sl(AN) I V(Zj) =0, j =1,...,J}, 

and we assume that 

{ Zl ...ZJ} CAN. 

Thus, dim S(AN) = N - J. Now choose J functions 1, ..... qj E H3"2(F) such that 

'1j(Zk) = Sjk (j, k = 1,..., J). Define the projection operator R: H3/2(P) - 

H3/2(r) r H4/2(I) by 
J 

Rg(z):= g(z) - E g(z1)Nq(z). 
j=1 

Then the adjoint operator R' acts in S 1(AN) as follows: 
J 

R S(z - Xk) = 3(Z - Xk) - E qj(Xk)3(Z - Zj) (Xk E AN). 

j=1 

If we take the (N - J)-dimensional range space of R' as space TN of test functions, 
we arrive at the modified collocation equations 

J J 
VUN(Xfl) - E VUN((Z1)'q((XJ) = f (xn) - E f (Z1)'q((X) 

(3.3) V=1 j=1 

(n = 1,**,N), UNE S(AN). 

These are satisfied by solutions in S(AN) of (0.6) but not conversely. Now we have 
the following situation: 

X0 = 1X= /2(F); A=V; Y = AX; 

VN = SOGN); TN = R'S1(AN); Q = R'D 

Furthermore, we can assume that qj 4 Y for j = 1, . . ., J. This implies (1.8). Then it 
is easily seen that the assumptions (i)-(iv) of Lemma 1.1 are satisfied. It remains to 
show the inequality (1.4). 

LEMMA 3.1. There is a compact operator C: H1o2(J) H F2(F)' and a constant 
y > 0 such that 

Re( Dv, DRVv) + (Cv, v)) > yIIvIIffl/2(r) for all v E fl/2(H). 

Proof. By localization to the reference angle r,, decomposition into even and odd 
parts, and density arguments, we see that we have to show 

(3.4) Re((Dv,D(V0 ? V,)v) + (Cvv)) > 
y|jVj1/2(R+) 

for all v E Co (R +) with support in a fixed compact set. Here, 

(3.5) Vjp(x):= log - -em (y) dy. 
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Mellin transformation gives [11] 

_cosh( 7 -)XI, 
V)(X)~~ =csinh 7OX+( i) (IM X GE (0, 1)). 

By the Parseval relation we obtain 

(Dv, D(Vo? V.)v) 

2 1 IX~ij2b(X i) 
2ImpX=-1/2 

(cosh T(X + i) ? cosh(7 - co)(X + i) ^(X) dX. 

For ImX = - we have v-( + i) = b(X) and X + i = X. Shifting the path of 
integration to Im X = 0, we thus obtain 

(Dv, D(Vo V)v) 

= 1 X ; cosh T(X + i) ? cosh(7n-c)( +(i) + (I) 12 
2 27 ~I XO sinh7(X +i) i3X) d 21 mX=0 S~1(\+I 

joo M+(X)1b(X) |dX, 

with 

m+() = i . (cosh7X + coscocosh(7 - co)X + isincosinh(7 - co)X). 

Hence, 

Rem+(X) > y(i + X2) (X E R), 

and thus 

Re(Dv,D(Vo ? Vj)v) > y (1 + X2)Ivi(X) 2dX 
-00 

Y|v|H 1/2(R) 

This gives (3.4), and the lemma is thus proved if we note that 1 - R is finite-dimen- 
sional and hence compact. [ 

Lemma 1.1 is now applicable to (3.3) and gives 

THEOREM 3.2. There are No E N and C > 0 such that for all f E H3/2(r) with 
U:= V-1f e H1/2(F) and for all N > No there exists a unique solution UN E S (A\N) 

of (3.3) satisfying 

jIUN llft1/2(r) K CII U IHjj1/2(r) 

and 

jju - UNIIH1/2(F) < Cinf{IIU - UIIft1/2(r)IU GE NAN)} 

As the hypothesis u e H1/2((r) excludes the interesting case of u having corner 
singularities, the theorem is of limited applicability. We shall construct now a second 
modification of the original collocation scheme that will work for all weak solutions 
if the right-hand side is smooth enough. 



COLLOCATION METHODS FOR BOUNDARY INTEGRAL EQUATIONS 471 

We choose a weight function p E C?(R2 \ { z1,***, z1 }) with 

p ( z ) = j z - z) I in a neighborhood of zj, j =1, . .,J. 

We assume again that { zj. .., zj } C AN and define 

SP(AN):= -S'(AN) = {ulPU E S p 

If we define 

S (N): {f E S(z(AN) Isupp n {zz,..., zj} = 

then 

dim S.(JAN) = dim S'(AN) = N - J. 

and u E S, (AN) implies PDpU E S ((AN). Thus we set VN:= SP(AN); 
TN:= -1(AN); and Q: =pD2p. Then the collocation equations (1.2) are: Find 
UN E Sp(AN) with 

(3.6) VUN(Xl) =f(xfl) forallx x EzN\{zl,.Z , ZJ}. 

We need the weighted Sobolev space 

Hp1/2 (r)= IH1/2(J) = {u a/2(r) 
p 

with the norm 

|| U |H1/2 = || PU ||1/2. 
Then we set 

X:= Hp'2(F) and X0:- H F/2(F) n H M/2(F) 

with the norm 

|| U || : X I = | |Hi/2 + || fU||H-1/2(r). 

With A := V and Y:= AX the hypotheses of Lemma 1.1 are satisfied: (1.8) holds 
because Y c H 3/2(r\ z1,..., z }) is a Hilbert space of functions continuous on 
F \ { z1,..., zj }. Thus assumption (i) holds. Assumption (ii) is trivial. Concerning 
assumption (iii), we note that every v e S1(AN) is continuous on each segment Fi 
and is constant on one-sided neighborhoods of the corners. Thus VN C X0 holds. It 
remains to show the estimates (1.3) and (1.4). In order to use the local principle, 
Lemma 1.4, one has to consider commutators of multiplication operators by 
X E CO (R2) with A and with Q: 

B' = QX - XQ = p((D2X) + 2(DX)D)p, 

Bo:= AX - xA. 

Here one can assume that X equals one or zero on a neighborhood of the corner 
points. But outside such neighborhoods, the spaces X and X0 coincide with 
H1/2(J), where F is a smooth curve, and for the latter case the corresponding 
compactness results are well known from the calculus of pseudodifferential opera- 
tors. 
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Therefore, we only consider the reference angle r, and the bilinear form 

(3.7) b(v,w):= (Dpv, DpVW)L2(p ), 

where v, w E Co (J,,) with support in a fixed compact set, and p(z) = Izi on the 
support of v and w. 

LEMMA 3.3. For all v, w E Co (rs,), 

(3.8) b(v,w) = b1(v,w) + b2(v,w) with 

b1( v, w) = KDpv, VDpw), b2(V, W) = (Dpv, Vw) = -b2(w, v) 

The following estimates hold with y > 0 and M independent of v, w: 

(3.9) lb1( v, w) I ?< M|i V IIHP/2(rI,)II WH11 (F.), 

(3.10) Re(b1(v, v) + Cvv)) > 2 (r) 

with a one-dimensional operator C, and 

(3.11) b2(v, w) I < M|| V IIHP/2(],)(I1 W IIHP/2(F3 + wI1WH-1/2(rI)). 

Proof. By taking even and odd parts of v and w, one reduces everything to the 
half axis R + (compare Lemma 3.1). One has 

(3.12) pDV, = J/ ,Dp with (pv)(x) = xv(x) on R. 

From this, there follows (3.8). The estimates (3.9), (3.10) and (3.11) follow from 
known properties of the operator V: 

|(Dpv, VDPW) I < M|| DpvllffH-1/211 Dpwllff-1/2S 

Re(Dpv, VDpv) > Y 11Dpv H-1/2, 

|(DpvVVw)I < MIIDpvjIIq-112IIWIIH-112. O- 

Remark 3.4. The estimates in the above lemma can also be proved by Mellin 
transformation. In this way one can see also that the anti-Hermitian part b2 of the 
sesquilinear form (3.7) is not bounded with respect to the Hermitian part b1. This 
fact forces us to introduce the different norms in X and X0. With V0, V,, as defined 
in (3.5), one finds on R+: 

(Dpo Dpv ) =m +(X) _ (X-i) (X - i) A 

with 

m +(X) = ( 2 + iX) coshrX + cosh(7T - W) X 
m?(X)=(X2?iX) ~~~sinh 7rX 

Here, Re m ? (X) corresponds to b1, and i Imm +(X) to b2, and for small X the latter 
is not dominated by the first one,- so that estimates (1.3) and (1.4) cannot hold 
simultaneously with only one norm (i.e., X = X0), whatever this norm might be! 

Now we can apply Lemma 1.1 and obtain the corresponding stability and error 
estimates. 
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THEOREM 3.5. There exist N0 E N and C > 0 such that for all f E H112(T') with 
u = V-f E H-1/2(r) satisfying pu E H1/2(r) there exists a unique solution UN E 

SI(1\N) of (3.6) satisfying 

IUN IIH,/2(r) _ c( || u ||H-1/2(r) + || U || HI/2(v)) 

and 

jju - UN jjH1/2(r) < C inf{ |J u - u IiH-1/2(F) + {1U - ijj |HP/2(r) I U E SJ AN)) 

Remark 3.6. The hypothesis is satisfied for all smooth f; f E Hs(J) with s > 3/2 
is sufficient. The reason is that the singular parts of u are of the form (near a corner 

ZJ) 
|Z - ZJ |log Z _ Z jk 

with some a > -1 (actually, a = ma1 + n - I > - 2, where m E N. n E No, and 
a1 is defined in the introduction). Such functions are obviously contained in 

4. Orders of Convergence. From the error estimates in Theorems 2.3, 3.2, and 3.5, 
one can derive convergence orders simply by utilizing results on the orders of best 
spline approximations in the respective norms. 

In Theorem 2.3 there appears the standard H1-norm, and one can therefore apply 
the standard approximation property of piecewise linear splines: 

(4.1) inf{jju - iIH1(F)IU E S1(AN)} < ChaIIuIIH'+?(v) (0 < a < 1) 

where C does not depend on h and u E H1 [(F). Here the grid AN with maximal 
meshwidth h need not satisfy any uniformity condition. In our case of the second- 
kind integral equation, we can apply (4.1) for 

a < a0 - 2 E (0, ?2) 
if the right-hand side satisfies f e H1"(F), because then also u E H1"a(F) holds. 

It is well known that one can obtain also an order of convergence of h' as in the 
smooth case if one uses graded meshes ([9], [16], [26]). We shall study the effect of 
graded meshes only in the case of the first-kind integral equation where, due to the 
nonstandard norm, we have to prove the approximation result anyway. 

For the integral equation of the second kind, we can use Aubin-Nitsche type 
duality estimates to derive error estimates in lower-order Sobolev norms and obtain 
higher orders of convergence in this way. For this purpose we need an approxima- 
tion property of the test functions in the dual space. 

LEMMA 4.1. There exists C > 0 such that 

inf(I|t - TIIH-l(r)IT E S '(AN)} < ChIjtjIL2(r) 
for all t E L2(F), h > 0. 

Proof. Given t E L2, we have to construct T E S1(AN) such that 

I(t - T,O)I -<- ChI1tI1L2(v)I11PHL(v) 

for all p E H1(J). Clearly, we can assume that F is the unit interval and t and 4 are 
smooth, and 

x 

1=1 
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Now choose c1 = 0, and 

xil IC =J t dt (j = 2, . .., J). 

Then by partial integration 

Kt-T,p) = - 0/ f (x)f t(t)d dx, 
j=2 X1j 

hence 

t- TO)l< j k'(x) 2dxf J t( )d| A 

E X ' 2d E |X -X_ 112J t( X) I dx 
j=2 X11 j=2 

110 ,1? | 12 h2 11 t 1122 0 

THEOREM 4.2. Let 0 < a < ao - 1/2 and s E [0, 1]. Then there is C > 0 such that 
for allf E H1 +'(F) and the solution UN of the collocation equations (0.5) there holds 

I|u - UN IIH,(F) < Chl ags|If iH.1+(IF), 

Proof. For s = 1 this follows from Theorem 2.3 and (4.1). If we show it for s = 0, 
then the general case will follow by interpolation. Thus we have to estimate 

I|u - uI I2 (L) = u L2(T), 2() 1. 

Now 1 + K: Hs(Jr) 3 Hs(J') is bijective and continuous for all s e [-1,1]. The 
same holds for the adjoint operator 1 + K'. Thus IlI IL2 = 1 implies t= (1 + K') 11 
E L2(TF) and ItI L2(F) < M:= I1(1 + K ') - 11. Now we use the definition of UN: 

T, (1 + K)(u - UN)) = 0 for all T E S 1(AN). 

Thus, for all T E S-1(AN), 

(Il, u - UN)I =Kt,(1 + K)(u - UN))| =(t - T,(1 + K)(u - u,') 

< || t - T II H- 1(F)CII (u - UN) IIH'(F)- 

By Lemma 4.1, 

1(1, U - UN) I < ChIl t IIL2(r)II U - UN IIH1(F) 

Hence, 

||U - UN IIL2(F) < Chjju - UNIIHl(F), 

and the result follows. El 
Remark 4.3. For s > 1/2 we have, by Sobolev's embedding, estimates in Holder 

norms. In particular, we have the pointwise estimate 

1j U - UN iiL (F) = ?(haOo -) for any c > 0, 
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which can be improved (without further work!) to a O(h3/2- )-estimate for suitably 
graded meshes. 

Now we consider the case of the first-kind integral equation, Theorem 3.5. Spline 
approximation in weighted Sobolev spaces has been studied by several authors [6], 
[9], [15], but the kind of result needed here is not available. We assume that 
u E H -1/2(r) is the solution of the equation Vu = f with f smooth enough. Then u 
has the following properties: 

(i) u E Hao-l/2 -(F); pu c Hao+l/2 - (any e > 0); 
(ii) pu = 0(pao); Dpu = O(pao-l); D2pu = O(pao-2) near the corner points. 

For these estimates on u and Dpu, f E H5/2+e(T) is sufficient, and for the estimate 
on D 2pu, f E H7/2 +E(r) suffices. We approximate u by its interpolation ii in 
S'(A). Thus, if we define 

w:= pu, iv:= pf, 

then iv is the piecewise linear interpolant of w with nodes in AN. Note that w is 
continuous on F and vanishes at the corners. Now for the error estimate it suffices 
to consider a neighborhood of the corner points, because outside such a neighbor- 
hood, u is smooth and therefore one has an approximation of order h3/2 in the 
H 1/2-norm. 

We consider a one-sided neighborhood of one corner point and assume that it is 
parametrized by the unit interval. We further assume that 

p(x) = x, 

and u is given on [0,1] with the properties (i) and (ii) above. We define ii, w and iwP 

as above and write a := ao C (, 1). We assume that the grid AN has the form 

(4.2) xj= (jh)1, j=O,...,N=1/h 

with some /3> 1. We have to estimate the two norms on [0,11, 

11u - ulfiH-1/2 and IJW - WIIHI/2. 

LEMMA 4.4. There is a constant C such that 

[Ch3/2 for:> _2 
I|u - uIIH 1/2 + 11w - WIIH1/2 < { a (4 

,Ch alt-e for l< fl < 4-+1( > ?). 

Proof. From the estimates (ii) above we find for x E [xj, xj1+I]: 

I(w 
- iw)(x) <IXj+1 -Xl2 sup Ilw(r)I < Chol'(j + 1)aft-2 

4 E [, Xj Xj+ 1] 

and 

1(w - 0W)'(x) I< lxj+1 - Xjl sup Iw"(.) I 
4 E [Xj, Xj+1] 

s Ch(a`1)f(j + iya-1)0- 

Furthermore, for j = 0, i.e., x E [0, xl] we have 

I 
(W W(X)| <| " | +| ' j < C(x"- + h(a-1)f). 
X X ~~~~~~xi 



476 MARTIN COSTABEL AND ERNST P. STEPHAN 

We then estimate the following four integrals: 

+((w )(x) (2dx s< Ch(2a+)(j + 1)(2a1) , 

J2= fXi+| ( - )'(x) | dx < Ch(2al1) ( j + 1)(2a-1)- 3, 

x2 

3: 
1 ?1 1 2 

- 0- 
Jj3 f - | X (W-)(x) | dx < Ch(2a l)( J + 1)(2a1), 

Jj4:= f' --W- )(X) dx Cha8(j + )a - 

.~~~~~~( . i 

This gives 

N-1 N 

jjw - WII2L2 = E Jj, < Ch(2a)+ 1), j(2a+l)f35 

j=O j=1 

Now the sum on the right-hand side is bounded for (2a + 1), - 5 < -1 and 
bounded by CN(2a+l)/-4 = Ch-(2a+l)8+4 for (2a + 1)1P - 5 > - 1. Thus we get 

11W - IIL2 Ch (a 1/2)13} forl3 , } 2a + I 

Analogously, we find, using Jj2, 

|WL2 C h(a- 1/2)10 for < }2a -1 

With j3, we get 

|| (W W v) || 2 11U U|L2 < C~ha12A forB P x L2 h~~(ah /2fl} a 

With j4 we get 

i(w ) IIu uIIL1 < C{ h} for P{ 

Now we use interpolation to get the desired norms: 

V111/211W _ VII11 h 3/2 > 2/(2a -1), 
||w - fvIIH12 < C||w - wIL2Ilw - 1H1/ < C( t ) forP <{ 4/(2 1) 

Note that for a E (-,1): 

4 2 2 4 
1 2a + 1 a 2a - 1 2a - 1 

From the Sobolev embedding theorem H71/2+ C L' we obtain by duality LP c 

H-/E i.e., 

11U - U|H- 1/2-.- < C|| U -Ui 1| P for any > O. 

Hence we find for any e > 0 

I| U - UFiH1/2 < Ce| U - U |||IU - U ||L2 
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This gives 

h(2 13> 4/(2a -1), 
IlU - UTIIH-1/2 <s C h2- for 2/a < 3 < 4/(2a - 1), 

th a1 -,- I < f/ < 2/a. 

The rate 3/2 is obtained here for / > 3a/2 which is less than 2/(2a - 1). Of 
course, one could also write down from this the rates for 4/(2a + 1) < B < 
2/(2a - 1). 

Note finally that for the slightly larger norms 1 - 1/2 and 1 q1/2 the same 
estimates hold, because they have the same interpolation properties [20]. E 

Combining Lemma 4.4 and Theorem 3.5, we obtain our final result, Theorem 4.5 
below. We assume that the grid AN locally in a fixed one-sided neighborhood of 
each corner point has the form (4.2) in a suitable coordinate representation. 

THEOREM 4.5. There exists N. E N and C > 0 such that for allf smooth enough and 
N> No, the solutions u E H-/2(Y) of Eq. (0.2) and UN E SP(AN) of (3.6) satisfy 

f h 3/2 if ' > 2/(2ao - 1), 
I|u - UNII1Hp/2 (r) < C heaE if 1 <s / < 4/(2ao + 1); (any e > 0). 

Thus, we find also here the same optimal order of h3/2 that is valid for the 
H1/2-norm in the case of a smooth curve, if only the mesh refinement is strong 
enough at the corners. 
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